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Abstract: Generalised linear models (GLMs) overcome the limitations of Normal regression models since 

they can accommodate any distribution that is a member of the exponential family. These models allow 

transformation of the response variable through the canonical link function. This paper presents two GLMs to 

analyze a data set provided by a car insurance company. The first model is a lognormal regression model that 

relates claim size to a number of demographic, car-related and policy-related predictors and the second model is 

a Poisson regression model that relates the number of claims filed by a policy holder to these explanatory 

variables. An appropriate model that describes the aggregate claim amount in a portfolio of insurance contracts 

during a fixed period combines both claim size and number of claims through a compound Poisson distribution.   

Key words: Poisson and Lognormal distributions, Iterative reweighted least squares algorithm, 

Generalized Linear Models, Compound  Poisson distribution 

 

Introduction 

 

One of the most far-reaching contributions in statistical modelling is the concept of generalized linear 

models introduced by John Nelder and Robert Wedderburn (1972).  These models relate the response variable to 

the linear predictor (non-random component) through any invertible link function and accommodate any error 

distribution that is in the exponential family. Analyzing car claim data using traditional ordinary least squares 

regression models and ANOVA methods can be problematic.  Firstly the distribution of car claim size is very 

often right skewed and do not follow a Normal distribution; secondly the number of claims made by a 

policyholder is a discrete variable and would be better accommodated by a discrete distribution. GLMs, on the 

other hand, provide an integrated conceptual and theoretical framework that can be used to analyze both 

continuous and categorical response data. Logistic and Probit regression models are appropriate to analyze 

Binomial response data; whereas Loglinear models are suitable to analyze Multinomial and Poisson response 

data. The iteratively re-weighted least squares algorithm that maximizes the log-likelihood function in 

Generalized Linear models makes use of Fisher scoring.  Although GLMs accommodate most of the 

assumptions of Regression models they still rely on the assumption that the responses are independent. 

  

 

Estimation 

 

The unity of several statistical methods to analyze response data that departs from the normality 

assumption was demonstrated by (Nelder and Wedderburn 1972) using the idea of a generalized linear model. 

This section provides an outline of the properties of GLMs as a comprehensive structure.  

Consider a random variable iY  whose probability mass function, if it is discrete, or probability density 

function, if it is continuous is assumed to follow the form of the exponential family of distributions. 
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It is assumed that the responses iY  are independent and identically distributed and the distribution of each 

iY  is a member of the exponential family. Moreover the known values of the explanatory variables influence the 

distribution of iY  through a single linear function or linear predictor i  
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It is also assumed that the mean  ii YE , and linear predictor i  are related by a smooth invertible 

link function  g . 
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Considering the likelihood L as a function of β , one can find the maximum of L by maximizing 
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log where  iii yYPl  log . This is realized by solving the maximum likelihood equations 
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Moreover, by setting 
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The log-likelihood function is maximized by solving the equations 0
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be the scores with respect to parameters j  such that 
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In general the equations 0jU  for pj ,...,1  are non-linear and they have to be solved by numerical 

iteration.  The Newton-Raphson approach to solving these equations would be to set up an iterative scheme for 

the vector β .  The 
thm  approximation is given by 
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evaluated at the previous iteration.  These second derivatives are often complicated to calculate.  An alternative 

procedure, which is sometimes simpler than the Newton-Raphson method is called the Fisher scoring technique.  

It involves replacing the matrix of second derivatives by its matrix of expected values where 
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The generalized linear model maximum likelihood estimators are obtained by an iterative weighted least 

squares procedure.   

 

 

Application 

 

To implement the theory of GLMs we utilized a data set provided by a local insurance car company, to 

relate the number of claims filed annually by each policyholder and the claim size made by each claimant to a 

number of predictors. These explanatory variables included policy-related variables (cover subscription, 

premium paid annually by policyholder), car-related variables (number of owned cars, engine size) and 

individual covariates (age of policyholder). Premium paid annually and claim size are continuous variables; 

number of claims and number of owned cars are discrete variables; whereas cover subscription (Third party only, 

third party fire and theft, fully comprehensive), engine size (less than 1100, 1100-1500, more than 1500cc) and 

age of policy holder (18-30, 31-50, more than 50 years) are categorical variables. 

 
Figure 1: Frequency distribution of car claim size 

 

The data comprised 9107 policyholders of which 497 made at least one claim. The frequency distribution 

of claim size, displayed in Figure 1, was considerably right skewed and fitting a Normal regression model to this 

data was not deemed appropriate. EasyFitXL was used to identify the best contender for the distribution of claim 

size using the Kolmogorov Smirnov, Anderson Darling and Chi squared criteria. Undoubtedly the Lognormal 

distribution is identified as the best fitting distribution for claim size. 

 

 

Distribution 

Kolmogorov Smirnov Anderson Darling Chi squared 

Statistic Rank Statistic Rank Statisti

c 

Rank 

Lognormal 0.0231 1 0.2676 1 4.1677 2 

Normal 0.1701 17 26.127 17 131.54 18 

Table 1: Goodness of fit using Lognormal and Normal distributions 

 

Figure 2 displays that 94.5% of policyholders made no car claims throughout a year, 5.2% made one 

claim and the remaining 0.3% made at least two claims.  The Poisson distribution is appropriate for the number 
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of claims made yearly by a policyholder because this random variable is discrete, does not have an obvious 

maximum and making a claim is considered to be a rare event. 

 

 
Figure 2: Frequency distribution of number of car claims  

 

 

 

Fitting a Lognormal regression model to car claim size 

 

If the logarithm of the response variate log( )iy  has a Normal distribution with mean iμ  and variance 

2σ  then iy  has a lognormal distribution. Assume that claim sizes ,  1,...,iy i n=  are independent and follow a 

lognormal distribution whose density function is: 
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The mean and variance of iy  are respectively  
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If an identity link function )( i iη μ=  is assumed, one can compute the linear predictor iη , the predicted 

values iμ , the iterative weights 
21ii iw   and the working variate i iz y , at each iteration. 

 

 

 

 

 Predictor Wald Chi-Square df P-value 

Intercept 6957.628 1 0.000 

Engine size 3.875 2 0.144 

Age-Group 2.205 2 0.332 
Cover 0.380 2 0.827 

Premium paid 

annually 
4.988 1 0.026 

Table 2: Tests of model effects 

 

The tests of model effects displayed in table 2 indicate that the premium paid annually (in thousands of 

Euro) is the best predictor of car claim size.  This is followed by engine size, age of policyholder and cover 

subscription. This four-predictor model explain 15.7% of the total variance in the responses indicating that there 

are other important predictors that contribute significantly in explaining variation in car claim sizes. 

 

 

Term 

 

Parameter 

 

Std. 

Error 

95% Wald 

Confidence Interval 

Lower Upper 

Intercept 6.898 0.113 6.676 7.120 
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Engine size (less than 1100cc) -0.236 0.140 -0.510 0.038 

Engine size (1100-1500cc) 0.033 0.099 -0.162 0.229 

Engine size (More than 1500cc) 0 . . . 
Age-Group (18-30 years) 0.254 0.171 -0.081 0.589 

Age-Group (31-50 years) 0.047 0.097 -0.144 0.237 

Age-Group (More than 50 
years) 

0 . . . 

Cover (Third party only) -0.064 0.110 -0.280 0.152 

Cover (Third party fire and 
theft) 

0.007 0.130 -0.247 0.262 

Cover (Fully comprehensive 0 . . . 

Premium 0.351 0.157 0.043 0.659 
(Scale) 0.830 0.059 0.723 0.953 

Table 3: Parameter estimates and corresponding 95% confidence intervals 

 

The parameter estimates, displayed in table 3, reveal interesting contrasts between the levels of the main 

effects. Policyholders that pay large premiums tend to make bigger claims than other policyholders; young 

claimants tend to make bigger claims than older ones. Moreover, policyholders possessing small sized engine 

cars tend to make smaller claims than those possessing large sized engine cars and claimants who insure their 

cars under a third party cover tend to make smaller claims than those who insure their cars under a third party 

fire and theft or a fully comprehensive cover. The residual plot displayed in Figure 3 exhibits no systematic 

patterns indicating no model misspecifications. Approximately 95% of all Pearson residuals lie between the 2±  

threshold values which conform to what is expected. 

 

 
Figure 3: Residual plot 

 

 

Fitting a Poisson regression model to number of claims 

 

Suppose that the response variates ,  1,...,iy i n=  are independent and Poisson distributed 

( )i iy Poi μ:  whose mass function is: 
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The log link is the canonical link function for a random variable having a Poisson distribution 

logi iη μ= . Given the fact that the mean and variance of iy  are both i , one can compute the linear predictor 

iη , the predicted values iμ , the working variate   /i i i i iz y      and the iterative weights ii iw   at 

each  iteration. 

 

 Predictor Wald Chi-Square df P-value 

Intercept 2.050 1 0.152 

Age-Group 3.094 2 0.213 
Cover 47.627 2 0.000 
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Number of cars 

owned 

15.198 1 0.000 

Premium paid 
annually 

6.558 1 0.010 

Table 4: Tests of model effects 

 

The tests of model effects displayed in table 4 indicate that cover subscription is the best predictor of 

number of car claims. This is followed by the number of cars owned by policyholder, the premium paid annually 

(in thousands of Euro) and the age of policyholder. This four-predictor model explain 29.6% of the total variance 

in the responses indicating that there are other important predictors that contribute significantly in explaining 

variation in the number of car claims made annually by a policyholder. 

 

 

Term 

 

Parameter 

 

Std. Error 

95% Wald Confidence 

Interval 

Lower Upper 

Intercept -0.486 0.5841 -1.631 0.659 

Age-Group (18-30 years) 0.131 0.1657 -0.193 0.456 

Age-Group (31-50 years) 0.169 0.0967 -0.020 0.358 

Age-Group (More than 50 

years) 
0 . . . 

Cover (Third party only) -0.667 0.1321 -0.926 -0.408 
Cover (Third party fire and 

theft) 
-0.675 0.1129 -0.896 -0.454 

Cover (Fully comprehensive 0 . . . 
Number of cars owned 2.228 0.5716 1.108 3.349 

Premium paid annually 0.001 0.0002 0.000 0.001 

(Scale) 1    

Table 5: Parameter estimates and corresponding 95% confidence intervals 

 

The parameter estimates, displayed in table 5, reveal interesting contrasts between the categories of the 

predictors. Policyholders that pay larger premiums tend to make bigger claims than other policyholders; old 

claimants tend to make fewer claims than younger ones. Moreover, policyholders who insure their cars under a 

Fully Comprehensive cover have a tendency to make more claims than others and the number of claims made 

annually increases with the number of cars owned by the policyholders. Approximately 95% of all Pearson 

residuals lie between the 2±  threshold values which conform to what is expected. 

 

The compound Poisson distribution 

 

The decomposition of the aggregate claim amount S paid annually by the insurer allows consideration of 

the number of claims and corresponding claim amounts separately. A practical advantage of this is the factors 

affecting claim numbers and claim amounts may well be different. For instance, a prolonged spell of bad weather 

may have a significant effect on claim numbers but little or no effect on the distribution of individual claim 

amounts. On the other hand, inflation may have a significant effect on the cost of repairing cars, and hence on 

the distribution of individual claim amounts, but little or no effect on claim numbers. 

If the random variable N, representing number of claims made by policyholders has a Poisson distribution 

with parameter λ  and 1 2, ,..., NX X X  are corresponding claim amounts which are assumed independent and 

identically distributed, then the total claim amount 
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
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i
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 has a compound Poisson distribution. This is 

obtained by marginalizing the joint distribution of ( , )S N  over N, which in turn is attained by joining the 

marginal distribution of N with the conditional distribution S N . If the number of claims N has a Poisson 

distribution with mean λ  and the total claim amount S has a compound Poisson distribution with parameter λ  

then, 
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The expectation of S is obtained by applying the identity [ ] [ [ | ]]E S E E S N=  
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The moment generating function of S is the moment generating function of N evaluated at log ( )XM t . 
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A very important property is that the sum of the independent compound Poisson random variables is itself 

a compound Poisson random variable. If 1,...,  nS S are independent random variables each having a compound 

Poisson distribution with parameters  and ( ) for 1,...,i iλ F x i n=  where ( )iF x  is the distribution of individual 

claim amounts then 
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 also has a compound Poisson distribution with parameters 



n

i

i

1

  and 





n

i

ii xFxF
1

).(
1

)(   Table 6 displays the distribution of claim size and the average number of car claims per 

age group and per cover. 

 

 

Conclusion 

 

The GLMs identified one significant predictor (premium paid annually) for claim size and three 

significant predictors (cover subscription, number of cars owned, premium paid annually) for number of filed 

claims. One of the limitations of this study is that the explanatory variables explained a small portion of the 

variation in the response variables. Indeed other explanatory variables, for instance, speed of car before impact 

and driving behaviour would have improved predictions if they were recorded.   

 

 

 

 

 

 
Age Group Distribution of claim size Mean number of claims 

18 – 30 years ln (1277.5,  0.829)N  
1λ  = 0.05108 

31 – 50 years ln (1117.4,  0.963)N  
2λ  = 0.06195 

More than 50 years ln (1039.1,  0.967)N  
3λ  = 0.05334 

 
Cover subscription Distribution of claim size Mean number of claims 

Third party only ln (1112.9,  0.895)N  
1λ  = 0.03757 

Third party fire and theft ln (1123.6,  0.871)N  
2λ  = 0.03907 

Fully comprehensive ln (1117.4,  0.942)N  
3λ  = 0.08201 

Table 6: Distributions of claim sizes and mean number of claims 
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An alternative approach to address the data heterogeneity is by fitting Latent class models. These models 

assume that the observed data are actually composed of several homogeneous segments that are mixed together 

in unknown proportions.  The segments are considered latent (unobserved) because the number of clusters and 

the number of individuals they comprise are unknown. The objective is to estimate the true number of segments 

and derive a prediction regression model for each segment using the expectation-maximization (EM) algorithm 

that maximizes the expected log-likelihood function. Indeed the main advantage of using these models over 

traditional clustering techniques is that estimation and segmentation are carried out simultaneously.   
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