
 JFAMM-3-2015  

72 

 

 

 

A new approach to modelling claims due to natural hazards 

 
 

Pavel Stoynov,  

Faculty of Economics and Business Administration, 

Sofia University, 

 todorov@feb.uni-sofia.bg 

Plamena Zlateva 

Bulgarian Academy of Science 

 

 

Abstract: United Nations International Strategy for Disaster Reduction defines risk of natural disaster 

as “a potentially damaging phenomenon that may lead to loss of life or injury, property damage, social and 

economic disruption or environmental degradation”. Each hazard is characterized by location, intensity, 

frequency and probability. It is interesting to study inter-arrival time between two disasters in a vulnerable 

geographic area. In this article, a new approach to model inter-arival time between two disasters based on 

Stoynov distribution and process is considered.  
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1. Introduction.  

United Nations International Strategy for Disaster Reduction defines risk of natural disaster as “a 

potentially damaging phenomenon that may lead to loss of life or injury, property damage, social and economic 

disruption or environmental degradation”. Each hazard is characterized by location, intensity, frequency and 

probability. It is interesting to study inter-arrival time between two disasters in a vulnerable geographic area. In 

this article, a new approach to model inter-arival time between two disasters based on Stoynov distribution and 

process is studied. The approach is firstly presented in Stoynov, Zlateva and Velev (2015).  In this article, the 

approach is further investigated 

The article is organized as follows. 

In Section 2, Stoynov type distribution and process are shortly presented. In section 3, applications of 

Stoynov process to model inter-arrival time of natural hazards are considered. 

2. Stoynov distributions and Stoynov process. 

We say that a random variable   with probability mass function )(xf  has distribution of ),( nST  

family and denote this fact ),,(  nST  if the probability mass function of    is given by the formula 
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where 
kG  are random variables with probability mass function ),()( kfxf kG

  and 
nD  are positive 

integer mixing random variables. 

Here for 
kG  we may adopt different families of distribution.  

In this article, the case of Stoynov family of first kind is considered where  
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 where the coefficients ),( nC  are 

given by the formulas: 
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Also, variables 1
~

 nn DD  can be introduced taking values nk ,,0   with probabilities  
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Then the probability mass function )(xf  of    may be presented also by the formula 
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 If a random variable has Stoynov distribution of first kind, we will denote this fact ).,(1  nST   

If  in ),(1 nST  we enforce ,kDn   i. e.  

,1111,0)(,1)(  nikkiiDPkDP nn
 

which may be considered as degenerate Stoynov distribution of first kind, we actually obtain Erlang distribution, 

i. e. ).
1

,(


 kErlang   

 ),(1 nST  distribution can be considered as a special kind of generalized gamma distribution 

(Stoynov, 2011).  

We say that a random variable   has generalized gamma distribution if its  probability density function 

is given by 
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is the integral representation of the hyper-geometric function of second kind (Zamani and Ismail, 2010). In this 

case, for   we write ).,,,( suG   

To remember that we say that the random variable   has a gamma distribution and denote 

),(   , if its probability mass function is given by 
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 Here )(  is defined by 
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We see that  ).0,,,(),(  suG   

Actually, we have that  

).,1,,1(),(1 nsuGnST    
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The exponential distribution is a special kind of  ),(1 nST  distribution are )(),0(1  ExpST  . 

To recall that the random variable   has exponential distribution and denote )( Exp , if its probability 

mass function is given by 
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The case  ).(),1(1  LindleyST   can be considered as a weighted version of exponential 

distribution with weighting function  .1)( xxw   We say that the random variable   has Lindley 

distribution and denote )( Lin , if its probability mass function is given by 
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The case 2n  leads to ),2(1 ST  distribution which can be defined as weighted exponential 

distribution by the weight function .)1()( 2xxw   

We say that the random variable   has ),2(1 ST  distribution and denote ),2(1  ST  , if its 

probability mass function is given by 
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To check that the weight function in the definition of the distribution is the right one, we could calculate 
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Ew  

We say that a process )(tX  is a Stoynov process of first kind or ),(1 nST  process,  and denote this 

fact ),,;(1)( ntSTtX     if for it: 

1) .0)0( X  

2) )(tX  is pure jump process with jumps at times ,2,1,' iTi  and jump sizes 

 .1)(  iTX  

3) The intervals between two jumps are  

.0,,1,0),,1(1 01   TinSTTT iii   

 We say that )(tX  is compound ),(1 nST  process if we replace condition 3) with condition:  

3’) )(tX  is pure jump process with jumps at times ,2,1,' iTi  and jump  sizes ,)( ii YTX   

where iY  are independent and identically distributed random variables. 

3. Applications of Stoynov process to model inter-arrival time of natural hazards. 

In Stoynov, Zlateva and Velev (2015), example with modeling inter-arrival time between floods by 

Stoynov processes is presented.   

4. Conclusion. 

Stoynov distributions presented in the article posses some suitable properties for modeling process of 

arrival of floods.  

The present work may be extended for typical (not degenerated) ST processes as well as by studying 

other choices of .kG   

For example, we may choose ).,(  еkNBGk
 In this case, ),(|   еDNBD nn

 and we obtain 

a distribution which we will call  ),(2 nST distribution.  

As another example we may consider )(xG k

k   - random variable which takes value k  with 

probability one. Then ).( nn DD   In this case, we say that random variable    has ),(3 nST  

distribution and denote ).,(3  nST   
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These processes with suitable parameters can also be used to model times of occurrence of floods. 

Further step is to test the model against real data and to check other proposals for the first parameter of 

Stoynov distribution and process. 
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